检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《大学数学》1993年第S2期227-229,共3页College Mathematics
摘 要:严格地证明一个命题和构造一个反例否定一个命题,其数学意义是同样重要的。构造反例的思维方法是深入理解多元函数微积分中基本概念必不可少的。我们在基本概念的剖析中已经给出了许许多多的反例说明定理条件的充分性和概念之间的关系。事实证明,反例的构成和养成举反例去思考的习惯。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249