检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张敏[1] 韩德仁[1,2] 何洪津[1] 陈艳男[3]
机构地区:[1]南京师范大学数学科学学院,南京210046 [2]江苏省大规模复杂系统数值模拟重点实验室,南京210046 [3]南京林业大学理学院,南京210037
出 处:《中国科学:数学》2012年第2期133-149,共17页Scientia Sinica:Mathematica
基 金:国家自然科学基金(批准号:11171159;11071122)资助项目
摘 要:交替方向法是求解可分离结构变分不等式问题的经典方法之一,它将一个大型的变分不等式问题分解成若干个小规模的变分不等式问题进行迭代求解.但每步迭代过程中求解的子问题仍然摆脱不了求解变分不等式子问题的瓶颈.从数值计算上来说,求解一个变分不等式并不是一件容易的事情.因此,本文提出一种新的交替方向法,每步迭代只需要求解一个变分不等式子问题和一个强单调的非线性方程组子问题.相对变分不等式问题而言,我们更容易、且有更多的有效算法求解一个非线性方程组问题.在与经典的交替方向法相同的假设条件下,我们证明了新算法的全局收敛性.进一步的数值试验也验证了新算法的有效性.The alternating direction methods are attractive for solving separable variational inequality problems,which solve the original large-scale problems via solving a series of small-scale problems.However,the twosubproblems solved per iteration are still variational inequality problems,which are structurally as difficult tosolve as the original problems.In this paper,we propose a new alternating direction method,which,per iteration,solves a variational inequality problem and a system of nonlinear equations.The nonlinear equation is well-conditioned and many efficient methods,such as Newton-type methods,can be adopted directly to solve it.Moreover,from numerical point of view,nonlinear equations are much easier to solve than variational inequalityproblems in many cases.Under the same mild assumptions as those in classical alternating direction methods,we prove global convergence of the new method.We also present some preliminary numerical results,which showthat our method is efficient.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.11