检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:牛红玲[1] 郝玲[1] 余志先[2] 尹建华[1]
机构地区:[1]河北民族师范学院数学与计算机系,河北承德067000 [2]上海理工大学理学院,上海200093
出 处:《辽宁工程技术大学学报(自然科学版)》2013年第1期132-135,共4页Journal of Liaoning Technical University (Natural Science)
基 金:国家自然科学基金资助项目(11101282)
摘 要:求一类非线性分数阶Volterra积分微分方程数值解,给出了Adomian分解法.将Adomian多项式与分数阶积分定义有效结合,得到了Adomian级数解.收敛性分析证明了所得级数解收敛于精确解,并给出最大截断误差.结果表明:随着Adomian多项式个数的增加,数值解的精度也越来越高.数值算例表明了该方法的可行性和有效性.与已有的方法相比,Adomian分解法操作更有效、更方便.In order to obtain the numerical solution of a class of nonlinear Volterra integro-differential equations of fractional order, a computational method is presented in this paper, which is based on Adomian decomposition method. Also, the Adomian series solution is obtained by combining the Adomian polynomials with the definition of fractional order integral. The convergence analysis shows that the series solution converges to the exact solution, and the maximum absolute truncated error of the Adomian series solution is also given. The results show that the more Adomian polynomials, the higher the precision of the numerical solution. Numerical example demonstrates the validity and applicability of the method presented. Comparing with the known approach, the method presented is more efficient and more convenient.
关 键 词:分数阶 非线性 VOLTERRA积分微分方程 ADOMIAN分解法 ADOMIAN多项式 收敛性分析 误差估计 数值解
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31