检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]云南大学数学系,云南昆明650091 [2]南华大学数学系,湖南衡阳421001
出 处:《生物数学学报》2002年第2期173-178,共6页Journal of Biomathematics
基 金:This Work is Supported by the National Natural Sciences Foundation of People's Republic of China under Grant 10061004 and the Natural Sciences Foundation of Yunnan Province
摘 要:用重合度论的连续性定理,本文获得如下具状态依赖时滞的单种群增长模型周期正解的存在性x(t)=x(t)[a(t)+b(t)xp(t-τ(t,x(t)))-c(t)xq(t-τ(t,x(t)))]这里a,b,c∈C((0,∞),R)是周期为ω(ω>0)的连续函数,且a>0,c>0.m,p,q为正整数且q>p.By using the continuous theorem of coincidence degree theory, we obtain the existence of positive periodic solution for the following single species population growth model with state dependent delayx(t) = x(t)[a(t) + b(t)xp(t - τ(t,x(t))) - c(t)xq(t - τ(t,X(t)))]where a, 6, c ∈ C((0,∞), R) are continuous periodic functions with period ω > 0 and a > 0, c > 0, m is a positive integer, p, q are positive integers with q > p.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15