检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江省绍兴市高级中学
出 处:《中学数学研究》2014年第8期48-49,共2页
摘 要:题目 已知数列{an}满足:a1=2,an=2(an-1+n)(n=2,3,…).求数列{an}的通项公式.(2013年全国高中数学联赛(B卷)试题)本文从一题多解,一题多变两个角度对本题目进行探究,希望对同仁有所帮助.一、一题多解解法1:a1 =2,a2 =2(a1+2)=8,当n≥3时,我们有an-2an-1=2n,an-1-2an-2=2(n-1),两式相减,得an-3an-1+2an-2=2,即an-an-1+2=2(an-1-an-2+2),令bn=an-an-1+2(n≥2),则数列{bn}(n≥2)是公比为2的等比数列,且b2=a2-a1 +2=8,于是bn=b2×2n-2=2n+1,即an-an-1+2=2n+1,于是,an-1-an-2+2=2n,…,a2-a1+2 =23,将上面n-1个等式相加,得an-a1+2(n-1)=23 +24+…+2n+1=2n+2—8,∴.an=2n+2—2(n+2),注意到当n=1,2时,公式仍适用,所以这就是所求的通项公式.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.207.156