检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学理学院,江苏南京210094 [2]苏州科技学院土木工程学院,江苏苏州215011
出 处:《中山大学学报(自然科学版)》2015年第5期49-55,61,共8页Acta Scientiarum Naturalium Universitatis Sunyatseni
基 金:国家自然科学基金资助项目(10972151;11272227)
摘 要:提出并研究基于Caputo分数阶导数的含时滞的力学系统的Noether对称性与守恒量。建立了含时滞的非保守系统的分数阶运动微分方程;根据系统的含时滞的分数阶Hamilton作用量在无限小群变换下的泛函不变性,给出了含时滞的分数阶Noether对称变换,Noether准对称变换以及Noether广义准对称变换的定义判据;研究了含时滞的分数阶Noether对称性与守恒量之间的联系,并举例说明结果的应用。The Noether symmetries and the conserved quantities of a mechanical system with time delay based on Caputo fractional derivatives are proposed and studied. Firstly,the fractional Lagrange equations with time delay are established. Secondly,based upon the invariance of the fractional Hamilton action with time delay under the group of infinitesimal transformations,the fractional Noether symmetric transformations,the definitions and criteria of the Noether quasi-symmetric transformations and generalized Noether quasi-symmetric transformations with time delay are given. Finally,the relationship between the fractional symmetries and the fractional conserved quantities with time delay are studied. At the end,an example is given to illustrate the application of the results.
关 键 词:非保守系统 时滞 CAPUTO分数阶导数 NOETHER对称性 守恒量
分 类 号:O316[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112