检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张改芹 畅大为[1] 李晓艳 ZHANG Gaiqin;CHANG Dawei;LI Xiaoyan(School of Mathematics and Information Science,Shaanxi Normal University,Xi′an 710119,China)
机构地区:[1]陕西师范大学数学与信息科学学院,陕西西安710119
出 处:《纺织高校基础科学学报》2018年第1期74-80,共7页Basic Sciences Journal of Textile Universities
基 金:国家自然科学基金(11226266;11401361)
摘 要:为了研究GAOR迭代法在线性方程组系数矩阵分别为Hermite正定矩阵和负定矩阵两种情况下的收敛性,将Householder-John定理推广到负定情况下,并给出负定条件下GAOR迭代法收敛的充要条件.利用Householder-John定理,完善GAOR迭代法的收敛性结论.最后借助推广的Householder-John定理,分析GAOR迭代法在线性方程组系数矩阵为Hermite负定矩阵条件下的收敛性.In order to study the convergence of GAOR iterative method on the basis of Hermitian positive and negative definite matrices,firstly the Householder-John theorem is introduced and generalized to the case of negative definite matrices.Then a sufficient and necessary condition for the convergence of GAOR iterative method is given under the negative definite condition.By using the Housholder-John theorem,the convergent conclusion of GAOR iterative method is improved.Finally,the convergence of GAOR iterative method under the Hermitian negative definite condition is analyzed through the generalized Householder-John theorem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.61.213