检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈一维 柴向阳 CHEN Yi-wei;CHAI Xiang-yang(College of Mathematics and Statistics,North China University of Water Resources and Electric Power,Zhengzhou 450045,China)
机构地区:[1]华北水利水电大学数学与统计学院,郑州450045
出 处:《重庆工商大学学报(自然科学版)》2021年第1期92-98,共7页Journal of Chongqing Technology and Business University:Natural Science Edition
摘 要:在高斯整环中,利用代数数论理论和同余理论的方法研究丢番图方程x^(2)+(2n)^(2)=y^(9)(x,y,n∈Z,1≤n≤7)的整数解问题;首先统计了1≤n≤7时已有的证明结果,之后在n=3,5,6,7时对x分奇数和偶数情况讨论,证明了n=3,5,6,7时丢番图方程x^(2)+(2n)^(2)=y^(9)无整数解,即证明了丢番图方程x^(2)+(2n)^(2)=y^(9)(x,y,n∈Z,1≤n≤7)无整数解。In Gauss domain,the problem of integer solution of the Diophantine equation x^(2)+(2n)^(2)=y^(9)(x,y,n∈Z,1≤n≤7)is discussed by using the methods of algebraic number theory and congruence theory.First of all,finding out the results that have been proven when 1≤n≤7.Then,by discussing the two cases that x is odd and x is even respectively,we proved that the Diophantine equation x^(2)+(2n)^(2)=y^(9)(x,y,n∈Z)has no integer solution when n=3,5,6,7.Finally the conclusion is reached that the Diophantine equation x^(2)+(2n)^(2)=y^(9)(x,y,n∈Z)has no integer solution when 1≤n≤7.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.171.178