financial support from the National Natural Science Foundation of China(Nos.52275385,U2167216);Sichuan Province Science and Technology Support Program,China(No.2022YFG0086).
To improve the wettability of hypereutectic Al−60Si alloy and enhance the mechanical properties of the joints,Al−60Si alloy was joined by ultrasonic soldering with Sn-9Zn solder,and a sound joint with in-situ Si parti...
financial support of this work from the Ministry of Science and Technology, Taibei, China, under Projects No. MOST 105-ET-E-020002-ET, 105-2622-E-020-003-CC3
Al0.3CrFe1.5MnNi0.5 high entropy alloys(HEA)have special properties.The microstructures and shear strengths of HEA/HEA and HEA/6061-Al joints were determined after direct active soldering(DAS)in air with Sn3.5Ag4Ti ac...
Project(51435004)supported by the National Natural Science Foundation of China
Soldering aluminum alloys at low temperature have great potential to avoid softening of base metals.Pure Al was solderedwith pure tin assisted by ultrasound.The influence of primaryα(Al)on the microstructure of Al/Sn...
Project(51375260) supported by the National Natural Science Foundation of China
Transient liquid phase(TLP)bonding is a potential high-temperature(HT)electron packaging technology that is used inthe interconnection of wide band-gap semiconductors.This study focused on the mechanism of intermetall...
Projects(51075104,50975054) supported by the National Natural Science Foundation of China;Project(2010RFQXG020) supported by the Harbin Excellence Talents Program,China
Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The u...
Soldering experiments with Sn-3.5Ag-0.5Cu lead-free solder on Au/Ni/Cu pad were carried out by means of diode-laser and IR reflow soldering methods respectively.The influence of different heating methods as well as ou...