检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《自动化信息》2005年第8期35-37,共3页Automation Information
摘 要:基于神经网络的智能PID控制策略,以经典的PID控制理论为基础,并通过具有多变量解耦控制自学习功能的神经网络参数整定来实现。本文给出了网络的结构和算法,示出了一组二元变量强耦合时变系统的实时仿真结果。通过计算机仿真证明,基于神经网络的PID控制具有良好的自学习和自适应解耦控制能力。该系统融解耦器和控制器于一体,易于实现,适用于非线性多变量系统的解耦控制。它使解耦后的系统具有较好的动态和静态性能,特别是当根据BP控制规律确定了网络连接权系数的初值时,还能使系统参数快速收敛。Intelligent PID control strategy, which is based on neural network, is according to classical PID control theory, and it is realized through neural network parameter setting, with a self study function on multivariate decoupling control .The structure and the algorithm of the network were given and the real-time simulation results of a time-varying system with a double variable and strong-coupling characteristics were shown. It proved that PID control based on neural network has preferable self study and adaptive decoupling control ability through computer simulation .In this system, the de-coupler inosculates with the controller, the system is easy to implement and applicable for decoupling control of the nonlinear multivariate system. It makes the decoupled system had better dynamic performance and static characteristic. Especially, it makes the system parameters astringed fast when determined the initial value of link-weighted coefficient of the network according to BP control law.
关 键 词:PID控制 神经网络 多变量系统 解耦控制 多变量解耦控制 BP神经网络 智能PID 非线性多变量系统 自适应解耦控制 自学习功能
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145