检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《高等学校计算数学学报》2012年第2期160-178,共19页Numerical Mathematics A Journal of Chinese Universities
基 金:国家自然科学基金(11161002);江西省自然科学基金(2009GZS0001);东华理工大学校长基金.
摘 要:数值微分问题是由未知函数的已知分布或未知函数的近似来确定其导数的问题,是一类典型的不适定问题.数值微分在图像处理、偏微分方程反问题、医学成像以及金融工程等领域都有着广泛的应用,因此对该类问题进行深入的研究是非常有意义的.众所周知,数值微分的不适定性主要体现在计算的不稳定性上,即输入数据的微小扰动将造成数值微分的急剧变化,从而使得数值解毫无意义.那么,从未知函数的已知分布(即离散点上的近似值)或近似函数重建其导数时,得到的近似导数将与真正的导数相差甚远,导致不可用;对于高阶导数更是如此.因此,在数值微分中往往需要引入必要的正则化方法,从而获得稳定的正则化解.This paper mainly studies a numerical differential problem, which aims to compute the first and second order derivatives of an unknown function from its approximate data. New schemes approached by Lanczos' method are proposed to compute the first and the second order derivatives numerically. And, we prove that the high-precision Lanczos' derivative proposed in this paper is indeed a generalized derivative. When the unknown function is 5 times continuously differentiable and its fifth order derivative is bound, the convergence rate of the numerical deriva- tive of first order is O (δ4/5). While the unknown function is 6 times continuously differentiable and its sixth order derivative is bound, the convergence rate of the numerical derivative of second order is O (δ2/3). Moreover, we discuss the numerical differentiation problems for a function of multiple variables, and propose a Lanc-zos' generalized Laplace operator to approximate △u(x)=n∑i=1δ^2u/δx^2 Numericalexamples show that the presented methods are stable and efficient for computing the approximate derivatives at internal points of an interval. Our work is a gener- alization of Lanczos' derivatives.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38