基于电子鼻技术判定冷鲜罗非鱼片品质劣变进程  被引量:21

Evaluating Quality Deterioration of Chilled Tilapia Fillets by Electronic Nose Technique

在线阅读下载全文

作  者:刘寿春[1,2,3] 钟赛意[4] 李平兰[1] 马长伟[1] 杨信廷[2] 赵春江[2] 周国民[3] 

机构地区:[1]中国农业大学食品科学与营养工程学院,北京100083 [2]国家农业信息化工程技术研究中心,北京100097 [3]中国农业科学院农业信息研究所,北京100081 [4]广东海洋大学食品科技学院,广东湛江524005

出  处:《食品科学》2012年第20期189-195,共7页Food Science

基  金:国家星火计划项目(2010GA600001);国家"863"计划项目(2011AA100706)

摘  要:应用电子鼻采集贮藏过程冷鲜罗非鱼片顶空挥发性气味,同步进行感官评价、微生物和理化分析。结果表明:传感器响应信号随着鱼片气味浓度增大而增大,且对不同新鲜度气味有良好响应。线性判别(LDA)比主成分分析(PCA)更能有效区分鱼片的不同新鲜度、微生物及挥发性盐基氮含量,表明电子鼻可快速检测鱼片的品质劣变进程。通过负荷加载分析和相关分析表明,W2W、W1W、W1S、W2S对区分冷鲜罗非鱼片不同新鲜度的贡献较大,并与感官可接受性、菌落总数和挥发性盐基氮的相关性良好,可作为今后研制鱼用电子鼻系统精选传感器的理论参考。Volatile odors of chilled tilapia fillets during different storage periods were collected using an electronic nose,and sensory,microbiological and chemical analyses were performed simultaneously.The results showed that the higher the odor concentration of chilled tilapia fillets,the stronger the sensor signal.Moreover,the sensor signals of the odors revealed good responses to their variations in degrees of freshness.Linear discriminant analysis(LDA) was more effective than principal component analysis(PCA) at distinguishing among tilapia fillets with different degrees of freshness,different total viable counts(TVC) and total volatile basic nitrogen(TVBN) contents,suggesting that electronic nose allows quick evaluation of quality deterioration of chilled tilapia fillets.Loading analysis and correlation analysis demonstrated that sensors W2W,W1W,W1S and W2S greatly could make more contribution to discriminating among tilapia fillets with different degrees of freshness and were well correlated with sensory acceptability,TVC or TVBN.Thus,these sensors are potentially useful for further development of fishspecific electronic nose.

关 键 词:电子鼻 冷鲜罗非鱼片 品质劣变 主成分分析 线性判别分析 负荷加载分析 

分 类 号:TS207[轻工技术与工程—食品科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象