检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:申浩[1] 李书晓[1] 申意萍[1] 朱承飞[1] 常红星[1]
出 处:《航空学报》2013年第6期1405-1413,共9页Acta Aeronautica et Astronautica Sinica
基 金:国家自然科学基金(61005028;61175032;61005067;61101222);中国科学院知识创新工程(YYYJ-1122)~~
摘 要:为应对相机运动的影响,提出了一种快速有效的无人机(UAV)视频相邻帧图像配准算法。通过空间分布约束和角点量限制来筛选有效的FAST特征点,引入自适应阈值提高特征点检测的环境适应性,采用训练得到的不相关采样点集对特征点进行二值描述,以获得准确快速的特征描述,并通过最近邻算法根据汉明距离获得特征匹配对,最后运用RANSAC方法得到帧间仿射变换模型参数,消除相机运动带来的影响,为后续运动目标检测与跟踪提供保障。实验结果表明该算法快速、稳定,具有较高的环境适应性,能够满足无人机系统视频图像配准的要求。To deal with the effect which is caused by camera moving, a fast and reliable image registration method between sequential frames for unmanned aerial vehicle (UAV) videos is proposed. Firstly, the stable FAST corners are selected via the constraints of spatial displacements and cornerness measurements. Meanwhile, an adaptive threshold method is involved in the feature detection process to improve environmental adaptability. Then, the binary descriptions of the detected features are generated by using the uncorrelated sample point set, which is obtained by training, and the matched points are estab- lished using the NN (Nearest Neighbor) algorithm based on hamming distances. Finally, the affine transformation parameters between adjacent frames are estimated using the matched points by RANSAC, which can be provided for further processing, such as moving object detection and tracking. Experimental results show that the proposed algorithm is fast and reliable, it has high environmental adaptability, and thus can meet the image registration requirements in UAV systems.
关 键 词:无人机 计算机视觉 航拍视频 图像配准 特征提取
分 类 号:V297[航空宇航科学技术] TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38