检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡庆云[1]
出 处:《应用数学》2002年第1期62-67,共6页Mathematica Applicata
摘 要:本文证明了 ,用差分法求解非线性发展方程的初值问题 ,当方程适定 ,在差分格式相容的条件下 ,稳定性等价于收敛性和逐点Lipschitz条件 .The evolution equation is a system of partial difference eq ua tions, which has been widely applied in the dynamic mechanics theory and enginee ring. The difference method is adopted to solve the initial value problem of the nonlinear evolution equation in this paper. The solution stability is proved to be equivalent to the convergency and the point-by-point Lipschitz condition i f the equation is well posed and the difference pattern is compatible. As a resu lt, this leads to an extension of Lax theorem to the nonlinear case.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.11