用单调有界原理证明几个分析定理  

在线阅读下载全文

作  者:许祥鸿 

出  处:《无锡教育学院学报》1998年第4期4-8,共5页Journal of Wuxi Education College

摘  要:在现行的《数学分析》教材中,通常都把确界原理作为公理给出,用来反映实数集的连续性(完备性)。以此公理作为理论基础,先证单调有界定理,用以判别单调数列极限的存在性。至于判别更一般的数列极限是否存在,就要引用柯西准则,但柯西准则的充分性证明,却要放到很后的位置,作为较难的问题专门处理,与此相关的判别函数极限存在的柯西准则,以及在闭区间上连续的函数具有的各种性质的证明,也就建立在这样一种不甚踏实的基础之上。一反常规,本文将根据极限理论发展的需要。

关 键 词:单调有界原理 单调有界定理 柯西准则 一致连续 数列极限 确界原理 闭区间 自然数 上连续 子区间 

分 类 号:G658.3[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象