一类奇异非线性Dirichlet问题(英文)  被引量:1

A Singular Nonlinear Dirichlet Problem

在线阅读下载全文

作  者:张志军[1] 

机构地区:[1]烟台大学数学与信息科学系,山东烟台264005

出  处:《烟台大学学报(自然科学与工程版)》2004年第2期79-87,共9页Journal of Yantai University(Natural Science and Engineering Edition)

基  金:国家自然科学基金资助项目 (1 0 0 71 0 66; 1 0 2 51 0 0 2 );山东省自然科学基金资助项目 (Y2 0 0 2A1 0 )~~

摘  要:构造新的精细上下解,结合摄动方法和估计理论,严格刻画了参数β对奇异Dirichlet问题-Δu=g(x)u-γ+λup,u>0,x∈Ω,u| Ω=0古典解的存在性、正则性和渐近行为的影响.其中Ω是RN(N≥1)中的有界区域,γ>0,λ≥0,p>0,g∈Cαloc(Ω),且在Ω上满足b0φβ1≤g≤b1φβ1,β∈R,b0,b1是正常数,φ1是通常的第一特征函数.By constructing the new subsolution and supersolution, and the perturbed method, combining the estimate argument, we exactly show the parameter β how to affect existence, nonexistence, regularity, and the asymptotic behavior on Ω of the classical solutions to the singular boundary value problem - Δ u=g(x)u^(-γ)+λu^p,u>0,x∈Ω,u|_(Ω)=0, where Ω is a bounded domain with smooth boundary in R^N,γ>0,λ≥0,p>0,g∈C~α_(loc)(Ω) and b_0~β_1≤g≤b_1~β_1 on Ω, β∈R,b_0,b_1 are positive constants,φ_1 is the normal first eigenfunction.

关 键 词:奇异非线性 DIRICHLET问题 摄动方法 估计理论 半线性椭圆型方程 奇异项 存在性 正则性 渐近行为 

分 类 号:O175.25[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象