INFORMED

作品数:332被引量:457H指数:11
导出分析报告
相关作者:韩晓微鲁宇明黄鹤章伟于海涛更多>>
相关机构:上海工程技术大学南昌航空大学沈阳大学哈尔滨工程大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金中国博士后科学基金河北省自然科学基金瑞士科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Causally enhanced initial conditions: A novel soft constraints strategy for physics informed neural networks
《Chinese Physics B》2025年第4期365-375,共11页Wenshu Zha Dongsheng Chen Daolun Li Luhang Shen Enyuan Chen 
supported by the National Natural Science Foundation of China(Grant Nos.1217211 and 12372244).
Physics informed neural networks(PINNs)are a deep learning approach designed to solve partial differential equations(PDEs).Accurately learning the initial conditions is crucial when employing PINNs to solve PDEs.Howev...
关键词:initial condition physics informed neural networks temporal march causality coefficient 
Wake field prediction of a wind farm based on a physics-informed neural network with different spatiotemporal prediction performance improvement strategies
《Theoretical & Applied Mechanics Letters》2025年第2期141-153,共13页Junyong Song Lei Wang Zhiqiang Xin Hao Wang 
supported by the National Natural Science Foundation of China(Grant Nos.12072105,11932006,and 52308498);the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220976).
Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)framewo...
关键词:Dynamic wake prediction LiDAR measurements Physics-informed neural network Accuracy improvement strategy Step-by-step time saving strategy 
改进Informed RRT^(*)算法移动机器人路径规划
《计算机工程与应用》2025年第8期283-293,共11页鲁宇明 周羽逵 郭鑫 池吕庭 戴骏 
国家自然科学基金(61866025)。
Informed RRT^(*)算法对初始解不敏感,规划出的路径太接近障碍物,导致路径不平滑。提出一种改进的Informed RRT^(*)路径规划算法,该算法改进了约束采样空间和引导策略。在采样初期,将采样区域限制在一个圆形区域,加快初始解收敛,在算法...
关键词:移动机器人 路径规划 随机采样 Informed RRT^(*)算法 目标偏置 约束采样空间 
融合人工势场和Informed-RRT^(*)算法的机械臂自适应路径规划
《计算机集成制造系统》2025年第4期1179-1189,共11页贾浩铎 房立金 王怀震 
辽宁省应用基础研究计划资助项目(2022JH2/101300202)。
针对Informed-RRT^(*)算法存在规划用时长、迭代效率低、动态场景不适用的问题,提出一种融合人工势场和Informed-RRT^(*)算法的机械臂自适应路径规划算法。在路径生长方向上,提出一种概率自适应的目标偏置策略,构造判定区域生成偏置概率...
关键词:Informed-RRT^(*)算法 人工势场法 路径规划 动态场景 
Multi-parameter ultrasound imaging for musculoskeletal tissues based on a physics informed generative adversarial network
《Chinese Physics B》2025年第4期442-455,共14页Pengxin Wang Heyu Ma Tianyu Liu Chengcheng Liu Dan Li Dean Ta 
Project supported by the National Natural Science Foundation of China(Grant Nos.12122403 and 12327807).
Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process...
关键词:ultrasound image physics informed generative adversarial network musculoskeletal imaging 
Simultaneous imposition of initial and boundary conditions via decoupled physics-informed neural networks for solving initialboundary value problems
《Applied Mathematics and Mechanics(English Edition)》2025年第4期763-780,共18页K.A.LUONG M.A.WAHAB J.H.LEE 
Project supported by the Basic Science Research Program through the National Research Foundation(NRF)of Korea funded by the Ministry of Science and ICT(No.RS-2024-00337001)。
Enforcing initial and boundary conditions(I/BCs)poses challenges in physics-informed neural networks(PINNs).Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static...
关键词:decoupled physics-informed neural network(dPINN) decoupled formulation Galerkin method initial-boundary value problem(IBVP) machine learning 
基于改进Informed RRT^(*)算法的大棚采摘机械臂路径规划
《福建农林大学学报(自然科学版)》2025年第2期279-288,共10页郑泽斌 郑书河 翁武雄 林添良 郭雷 
福建省科技厅引导性项目(2022N0009);福建省移动机械绿色智能驱动与传动重点实验室开放基金课题项目(GIDT-2023XX);福建农林大学茶全产业链创新与服务体系建设项目(K1520005A05)。
【目的】提出一种机械臂路径规划算法,以解决多自由度机械臂在大棚采摘作业中路径规划速度慢、路径成本高等问题,为采摘机械臂高效作业提供依据。【方法】基于Informed RRT^(*)机械臂路径规划算法,引入自适应目标偏置策略,结合贪婪思想...
关键词:采摘机械臂 路径规划 改进Informed RRT^(*)算法 贪婪思想 动态概率 
Simulation of lubrication on rough surfaces with multiscale lubrication neural networks
《Science China(Technological Sciences)》2025年第3期192-203,共12页Yihu TANG Li HUANG Limin WU Xianghui MENG 
supported by the National Natural Science Foundation of China(Grant No.52130502);the National Key Laboratory of Marine Engine Science and Technology(Grant No.LAB2023-06-WD)。
The simulation of lubrication on rough surfaces is essential for the design and optimization of tribological performance.Although the application of physics-informed neural networks(PINNs)in analyzing hydrodynamic lub...
关键词:physics-informed neural network Fourier feature embedding multiscale lubrication rough surface 
Physically informed hierarchical learning based soft sensing for aero-engine health management unit
《Chinese Journal of Aeronautics》2025年第3期374-385,共12页Aina WANG Pan QIN Yunbo YUAN Guang ZHAO Ximing SUN 
supported in part by the National Science and Technology Major Project of China(No.2019-I-0019-0018);the National Natural Science Foundation of China(Nos.61890920,61890921,12302065 and 12172073).
Partial Differential Equations(PDEs)are model candidates of soft sensing for aero-engine health management units.The existing Physics-Informed Neural Networks(PINNs)have made achievements.However,unmeasurable aero-eng...
关键词:Hierarchical learning strategy Monitoring:Partial differen tial equations with unmeasurable driving terms Physically informed hierarchical learning followed by recurrent-prediction term Soft sensing 
基于海马优化的改进Informed-RRT^(*)的路径规划算法
《机械传动》2025年第2期93-100,共8页严贵僧 杨洁 
云南省教育厅科学研究基金项目(0111723084)。
【目的】为了解决传统Informed-RRT^(*)算法在复杂环境中面临随机性采样、低效搜索和难以提供最优路径等问题,提出了一种基于海马优化(Sea-Horse Optimizer,SHO)的改进Informed-RRT^(*)的路径规划算法。【方法】该算法结合了Informed-RR...
关键词:SHO算法 Informed-RRT^(*)算法 路径规划 采样导向性 自主避障 
检索报告 对象比较 聚类工具 使用帮助 返回顶部