凸二次规划

作品数:185被引量:281H指数:8
导出分析报告
相关领域:理学自动化与计算机技术更多>>
相关作者:张明望雍龙泉高岳林黄崇超寇述舜更多>>
相关机构:三峡大学武汉大学西安电子科技大学山东大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金陕西省教育厅科研计划项目浙江省自然科学基金湖北省自然科学基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=数学的实践与认识x
条 记 录,以下是1-4
视图:
排序:
一种高阶牛顿法求解投资组合优化模型被引量:4
《数学的实践与认识》2019年第19期216-221,共6页雍龙泉 
国家自然科学基金(11401357);陕西省青年科技新星项目(2016KJXX-95);陕西省教育厅科研项目(17JK0146);陕西理工大学科研项目(SLGKY2017-05)
建立了均值方差投资组合优化模型.通过把凸二次规划转化为非光滑的非线性方程组,并对其光滑化处理,进而转化为光滑非线性方程组,再用高阶牛顿法进行求解.最后应用于投资组合优化模型,通过改变年收益率而得到不同的投资决策.该算法计算...
关键词:投资组合优化模型 凸二次规划 非线性方程组 高阶牛顿法 
基于全牛顿步长求解凸二次规划问题的不可行内点算法
《数学的实践与认识》2013年第24期92-97,共6页龚小玉 孙立民 胡振鹏 王先甲 
国家自然科学基金(71071119)
借助于全牛顿步长对凸二次规划问题提出了一种新的不可行内点算法.算法主要迭代由可行迭代步和中心路径邻域迭代步组成.其优点是线性搜寻方向是不需要的.最后证明算法迭代复杂性为O(nlogn/ε),与目前最好的不可行内点算法复杂性一致.
关键词:凸二次规划 不可行内点算法 全牛顿步长 多项式复杂性 
一种新的求解凸二次规划的原始-对偶多项式内点算法被引量:2
《数学的实践与认识》2012年第17期206-210,共5页龚小玉 胡振鹏 王先甲 
国家自然科学基金(71071119)
对凸二次规划问题提出了一种新的原始-对偶路径跟踪算法,算法迭代方向的求解是不同于传统的牛顿法,而是借助于一种新的工具找到搜寻方向.最后证明了算法具有多项式复杂性.
关键词:凸二次规划 内点算法 路径跟踪算法 多项式复杂性 
基于代数等价变换下的凸二次规划不可行内点算法
《数学的实践与认识》2007年第23期101-107,共7页龚小玉 张明望 
湖北省教育厅自然科学重点科研基金资助项目(D200613009)
基于代数等价变换和在KMM算法的框架基础上,在原始-对偶内点方法的牛顿方程里嵌入一种自调节功能.从而对凸二次规划提出了一种新的迭代方向的不可行内点算法,并证明了算法的全局收敛性.
关键词:凸二次规划 代数变换 不可行内点算法 全局收敛性 
检索报告 对象比较 聚类工具 使用帮助 返回顶部