国家自然科学基金(60674033)

作品数:12被引量:41H指数:4
导出分析报告
相关作者:傅予力谢胜利谭北海何昭水肖明更多>>
相关机构:华南理工大学更多>>
相关期刊:《移动通信》《武汉大学学报(工学版)》《自动化学报》《Progress in Natural Science:Materials International》更多>>
相关主题:BSSSCA盲信号分离UNDERDETERMINEDBASED_ON更多>>
相关领域:电子电信自动化与计算机技术理学文化科学更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
A new geometric approach to blind source separation of bounded sources被引量:1
《Progress in Natural Science:Materials International》2009年第7期891-896,共6页Jinlong Zhang Guoxu Zhou Zuyuan Yang Xiaoxin Liao 
supported by the National Natural Science Foundation of China (Grant No. U0635001,60674033 and 60774094)
Based on the minimum-range approach, a new geometric approach is proposed to deal with blind source separation in this paper. The new approach is the batch mode of the original minimum-range approach. Compared with th...
关键词:Blind source separation Independent component analysis Minimum-range approach 
欠定盲分离中源的个数估计和分离算法被引量:6
《中国科学(F辑:信息科学)》2009年第3期349-356,共8页谭北海 杨祖元 周郭许 章晋龙 
国家自然科学基金重点项目(批准号:U0635001);国家自然科学基金(批准号:60674033;60774094);广东省自然科学基金(批准号:05006508)资助项目
在盲分离问题中,独立元分析一直是一个主要的研究方向,但是该方法不能直接推广到欠定混叠情形.考虑到大量的客观信号具有稀疏特性,稀疏元分析方法引起了人们的广泛关注,其中典型的是"二步法",即先计算混叠矩阵,再分离所有源信号,该方法...
关键词:稀疏表示 盲分离 欠定模型 模糊聚类 混叠矩阵 
Non-orthogonal joint diagonalization with diagonal constraints被引量:3
《Progress in Natural Science:Materials International》2008年第6期735-739,共5页Guoxu Zhou Zuyuan Yang Zongze Wu Jinlong Zhang 
the National Natural Science Foundation of China(Grant Nos.U0635001,60674033,60774094);the Natural Science Fund of Guangdong Province, China(No.05006508).
Joint diagonalization has attracted much attention and many algorithms have been presented so far. However, some ambiguities still exist in the objective functions for joint diagonalization. In this paper, some criter...
关键词:Joint diagonalization Blind source separation Conjugate gradient method 
New method for signal encryption using blind source separation based on subband decomposition被引量:2
《Progress in Natural Science:Materials International》2008年第6期751-755,共5页Zuyuan Yang Guoxu Zhou Zongze Wu Jinlong Zhang 
National Natural Science Foundation of China(Grant Nos.U0635001,60674033,60774094);the Natural Science Fund of Guangdong Province, China(Grant No.05006508).
A novel cryptosystem based on subband decomposition independent component analysis(SDICA)is proposed in this work,where no assumption of independence for the ciphers and the plaintexts is required.In the proposed cryp...
关键词:SDICA Signal encryption BSS 
一种低MSE的QAM信号盲均衡算法
《移动通信》2008年第12期63-67,共5页邓安安 李荣华 
国家杰出青年自然科学基金项目(60325310);广东省自然科学团队研究项目(04205783);国家自然科学基金项目(60674033)和(60505005);广东省自然科学基金项目(05103553)和(05006508);科技部重大基础前期研究专项(2005CCA04100);国家自然科学基金重点项目(U0635001)的资助
文章提出了一种新的以CMA算法为基础的QAM信号盲均衡算法。仿真试验表明,该方法比已有的MCMA和MMA方法具有更快的收敛速度和更好的收敛效果。
关键词:QAM CMA算法 盲信道均衡 
Adaptive blind separation of underdetermined mixtures based on sparse component analysis被引量:3
《Science in China(Series F)》2008年第4期381-393,共13页YANG ZuYuan HE ZhaoShui XIE ShengLi FU YuLi 
the National Natural Science Foundation of China (Grant Nos. 60505005, 60674033, 60774094 and U0635001);Natural Science Fund of Guangdong Province, China (Grant Nos. 05103553 and 05006508);Postdoctoral Science Foundation for Innovation from South China University of Technology;China Postdoctoral Science Foundation (Grant No. 20070410237)
The independence priori is very often used in the conventional blind source separation (BSS). Naturally, independent component analysis (ICA) is also employed to perform BSS very often. However, ICA is difficult t...
关键词:underdetermined mixtures blind source separation (BSS) dependent sources sparse component analysis (SCA) sparse representation independent component analysis (ICA) natural gradient 
基于超平面法矢量的欠定盲信号分离算法被引量:12
《自动化学报》2008年第2期142-149,共8页肖明 谢胜利 傅予力 
国家自然科学基金(U0635001,60505005,60674033);广东省自然科学基金(04205783,05006508);科技部重大基础前期研究专项(2005CCA04100)资助~~
探讨欠定情况下(观测信号少于源数目)的盲信号分离.首先给出了m维超平面的法矢量的计算公式,提出了一个基于超平面法矢量的矩阵恢复算法.其次针对语音分离,提出了k源区间及其检测方法,从而使k-SCA条件下的算法推广到了非稀疏信号的盲分...
关键词:欠定盲信号分离(BSS) 稀疏成分分析(SCA) 超平面聚类 法矢量 k源区间 
Blind signal separation of underdetermined mixtures based on clustering algorithms on planes被引量:2
《Progress in Natural Science:Materials International》2007年第6期670-674,共5页Xie Shengli Tan Beihai Fu Yuli 
Supported by National Natural Science Foundation of China (Grant Nos 60325310 ,60674033 and 60505005);the Guangdong Province ScienceFoundation for Program of Research Team (04205783);the Natural Science Fund of Guangdong Province , China ( Grant Nos 05103553 and05006508);the Specialized Prophasic Basic Research Projects of Ministry of Science and Technology , China (Grant 2005CCA04100)
Based on clustering method on planes, blind signal separation (BSS) of underdetermined mixtures with three observed signals is discussed. The condition of sufficient sparsity of the source signals is not necessary whe...
关键词:underdetermined mixture sparse representation mixing matrix blind signal separation 
Searching-and-averaging method of underdetermined blind speech signal separation in time domain被引量:6
《Science in China(Series F)》2007年第5期771-782,共12页XIAO Ming XIE ShengLi FU YuLi 
Supported by the National Natural Science Foundation of China (Grant Nos. U0635001, 60505005 and 60674033);the Natural Science Fund of Guangdong Province (Grant Nos. 04205783 and 05006508);the Specialized Prophasic Basic Research Projects of the Ministry of Science and Technology of China (Grant No. 2005CCA04100)
Underdetermined blind signal separation (BSS) (with fewer observed mixtures than sources) is discussed. A novel searching-and-averaging method in time domain (SAMTD) is proposed. It can solve a kind of problems ...
关键词:underdetermined blind signal separation sparse representation searching-and-averaging method overcomplete independent component analysis 
盲信号分离模型的混叠矩阵估计算法
《华中科技大学学报(自然科学版)》2007年第9期94-97,共4页傅予力 谢胜利 何昭水 
国家自然科学基金资助项目(60674033);国家杰出青年自然科学基金资助项目(60325310);广东省自然科学团队研究项目(04205783);广东省自然科学基金资助项目(051035530;5006508);科技部重大基础前期研究专项(2005CCA04100)
针对传统盲信号分离方法通过估计分离矩阵实现盲信号分离难以同时适应适定、欠定和过定模型的问题,给出了一种新的方法,直接估计混叠矩阵实现盲分离.首先给出估计混叠矩阵的梯度学习公式,并分析了该梯度算法对适定模型的有效性,然后将...
关键词:盲信号分离 自然梯度 欠定混叠 过定混叠 适定混叠 
检索报告 对象比较 聚类工具 使用帮助 返回顶部