命题转换

作品数:33被引量:25H指数:3
导出分析报告
相关领域:文化科学哲学宗教更多>>
相关作者:石佑启杨晓宋庆龙张金良王庆洋更多>>
相关机构:广东外语外贸大学江苏省盱眙中学辽宁师范大学唐山师范学院更多>>
相关期刊:《唐山学院学报》《中学数学月刊》《唐山师范学院学报》《濮阳职业技术学院学报》更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
基于中国治理实践的行政法学命题转换
《新华文摘》2024年第1期13-17,共5页石佑启 
引言,聚焦中国治理问题域,中国行政法(学)经过多年发展积累的学术资源,可以凝练出四个基本的学术共识。第一,中国治理有其自身的发展规律,不同于域外治理,两者在治理理念、社会基础、目标定位、结构范式、运行模式等方面的差异决定了行...
关键词:行政法学 中国行政法 治理理念 结构范式 学术资源 治理实践 运行模式 问题域 
基于中国治理实践的行政法学命题转换被引量:17
《中国社会科学》2023年第9期24-45,204-205,共24页石佑启 
中国治理实践有其独特的发展规律、价值目标和覆盖场域,其在向不同主体、领域、空间延伸的同时,也促进了行政法制度发展。治理实践与创新为行政法学研究提供了经验素材,催生了行政法学研究的价值取向嬗变,促进了行政法的制度功能调适。...
关键词:中国治理 行政法学 命题转换 理论创新 知识体系 
设计模型认知活动 培养数学核心素养
《中学数学研究》2021年第1期7-8,共2页吴莉莉 林新建 
“模型认知”是通过对条件与结论的充分剖析,联想出一种适当的辅助模型,如某种数量关系,某个直观图形,或者某一反例,以此促成命题转换,产生新的解题方法的数学解题策略.设计“模型认知”活动的关键在于构建出问题的辅助模型,这个“构建...
关键词:直观图形 辅助模型 模型认知 数学核心素养 问题求解 如何构建 解题方法 命题转换 
命题的否定与其否命题应用中的误区
《读写算(教育导刊)》2015年第14期197-197,共1页刘继成 
命题的否定与其否命题学习后,由于两者关系与形式很相近,从而导致学生易犯概念理解错误,命题转换错误,分析不到位等等问题,如何找到订正的良药,应从错误中寻求应用的三昧.下面展示几类常见错误以供警示提高。
关键词:否命题 应用 否定 误区 两者关系 理解错误 命题转换 常见错误 
浅谈命题转换的指导原则
《高考》2013年第9X期2-2,共1页朱中右 
在中学数学中,每一个命题都有若干不同的转换方向与途径。它们有难易之分,繁简之别。因些,选取并确定最佳的转换方向与途径就成了数学解题的关键。本文浅谈命题转换的若干指导原则,为解题提供参考。1.难易转换原则难易转换原则是命题转...
关键词:数学解题 中学数学 指导原则 数学问题 数形结合 外接圆半径 正弦定理 条件式 五条原则 转换形式 
从“远亲”到“近邻”——浅谈数学解题的转换原则
《中学数学研究》2013年第5期26-29,共4页黄涛 
数学解题的本质(化条件为结论)是一种矛盾转化,而命题转换是矛盾转化的表现形式,因此数学解题的过程就表现为命题转换的过程.由于矛盾是在一定条件下向其对立面转化,所以向对立面转化也成了命题转换的根本方向和途径.下面介绍有...
关键词:数学解题 转换原则 命题转换 矛盾转化 
沈壮海:传播核心价值观要注重规律
《中国监察》2013年第3期48-48,共1页
近日,武汉大学马克思主义学院教授沈壮海通过研究认为,积极培育社会主义核心价值观,需要以有效的传播取得大众共识。要善于将社会主义核心价值体系这一大道理结合人们常思的问题、常见的事例、常用的语言讲透阐明,善于将积极培育社...
关键词:社会主义核心价值观 沈壮海 传播 社会主义核心价值体系 马克思主义学院 日常生活 武汉大学 命题转换 
二进制思想对角谷猜想的证明
《数学学习与研究》2012年第17期95-95,共1页王国权 
角谷猜想(英语:Collatz conjecture),又称为3n+1猜想、冰雹猜想、考拉兹猜想、哈塞猜想、乌拉姆猜想或叙拉古猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1.取一个数字,如...
关键词:命题转换 二进制 概率 
数学命题转换的途径与方法
《成才之路》2012年第10期50-50,共1页刘立田 
数学题材的本质就是通过命题转换,设法消除条件与结论的差异,化条件为结论.或设法从已知条件求出未知结论。也就是说数学的命题过程就是对原命题一系列转换的过程。在命题转换过程中,每一个命题都有若干个转换的方向与途径,它们有...
关键词:命题转换 说数学 已知条件 转换过程 数学解题 原命题 
由一道函数值域问题谈命题转换与解法的探求
《高中数理化》2011年第22期9-10,共2页王庆洋 
在求函数的值域中,我们常碰到这样的一道题: 题 求函数y=x+1/x(x≠0)的值域.
关键词:函数值域问题 命题转换 探求 解法 
检索报告 对象比较 聚类工具 使用帮助 返回顶部