In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belon...
首先利用Kato理论,研究了一个具有多尖峰孤子解和满足H1守恒的n分支μ-Camassa-Holm系统Cauchy问题解的局部适定性;然后利用守恒律和能量估计,研究了该系统解的爆破现象。By utilizing Kato theory, this paper first establishes the l...
partially supported by the National Natural Science Foundation of China(12071439);the Zhejiang Provincial Natural Science Foundation of China(LY19A010016);the Natural Science Foundation of Jiangxi Province(20212BAB201016)。
In this paper,we consider the Cauchy problem for the Camassa-Holm-Novikov equation.First,we establish the local well-posedness and the blow-up scenario.Second,infinite propagation speed is obtained as the nontrivial s...