HENON方程

作品数:12被引量:10H指数:2
导出分析报告
相关领域:理学更多>>
相关作者:李昭祥杨忠华朱海龙彭双阶沈建更多>>
相关机构:上海师范大学安徽财经大学华东师范大学孝感学院更多>>
相关期刊:《纺织高校基础科学学报》《数学物理学报(A辑)》《山西大学学报(自然科学版)》《上海师范大学学报(自然科学版中英文)》更多>>
相关基金:国家自然科学基金上海市教育委员会重点学科基金上海市自然科学基金上海市教委科研基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
带有扰动项的Henon方程的多解性研究被引量:1
《数学物理学报(A辑)》2012年第4期785-796,共12页朱红波 王征平 郭渊斌 
国家自然科学基金(11026138,10801132)资助
研究了下面带有非齐次扰动项的Henon方程其中B是全空间R^N,N>4上的单位球.应用Bahri-Berestycki(见文献[3])中的扰动方法,证明了对任意的h(x)=h(y,z)=h(|y|,|z|)∈L^2(B),x=(y,z)∈R^1×R^(N-1),当α>N+2时,存在常数p_(N,l)>2使得对任意...
关键词:HENON方程 扰动方法 无穷多互异解 
计算立方体上Henon方程多个正解的分歧方法
《计算数学》2012年第2期113-124,共12页李昭祥 杨忠华 
国家自然科学基金(批准号:10901106);上海重点学科建设项目(批准号:S30405);上海市自然科学基金(批准号:09ZR1423200);上海市科委创新项目(批准号:09YZ150)
本文首先应用分歧方法给出计算立方体上Henon方程边值问题D_4(3)对称正解的三种算法,然后以Henon方程中的参数r为分歧参数,在D_4(3)对称正解解枝上用扩张系统方法求出对称破缺分歧点,进而用解枝转接方法计算出其它具有不同对称性质的正解.
关键词:HENON方程 对称破缺分歧 多解 扩张系统 解枝转接 
计算单位球上Henon方程正解的分歧方法
《山西大学学报(自然科学版)》2010年第4期479-485,共7页李昭祥 杨忠华 朱海龙 
国家自然科学基金(10901106);上海重点学科建设项目(S30405);上海市自然科学基金(09ZR1423200);上海师范大学科研项目(SK200936);上海市科委创新项目(09YZ150);上海市教委高校优青培养科研专项基金(RE948);安徽省高等学校优秀青年人才基金(2009SQRZ083)
首先应用分歧方法计算单位球上Henon方程边值问题O(3)对称正解,然后以Henon方程中的参数l为分歧参数,在O(3)对称正解解枝上用扩张系统方法求出对称破缺分歧点,进而用解枝转接方法计算出具有其它对称性质的正解.
关键词:HENON方程 对称破缺分歧 扩张系统 解枝转接 
求解正六边形上Henon方程边值问题的分歧方法
《纺织高校基础科学学报》2010年第3期259-262,共4页李红群 郭谦 李昭祥 
国家自然科学基金资助项目(10901106);上海市自然科学基金资助项目(09ZR1423200);上海市教委创新项目(09YZ150);上海师范大学科研项目(SK200936)
用对称破缺分歧方法计算了非线性Henon方程边值问题在正六边形区域上的多个非平凡解.讨论了解的各种对称性质,画出了从各个分歧点出发的具有各种对称性质的解枝图,从而可以直观的看出解的性态.
关键词:HENON方程 多解 对称破缺 分歧 Liapunov-Schmidt方法 
正方形上p-Henon方程多个正解的计算被引量:1
《数值计算与计算机应用》2010年第3期161-171,共11页李昭祥 杨忠华 朱海龙 
国家自然科学基金(批准号:10901106);上海重点学科建设项目(批准号:S30405);上海市自然科学基金(批准号:09ZR1423200);上海师范大学科研项目(SK200936);上海市科委创新项目(批准号:09YZ150);上海市教委高校优青培养科研专项基金项目(编号:RE948);安徽省高等学校优秀青年人才基金项目(批准号:2009SQRZ083)
本文首先给出计算正方形上p-Henon方程边值问题D_4对称正解的算法,然后以参数r为分歧参数,在D4对称正解解枝上用扩张系统方法求出对称破缺分歧点,进而用解枝转接方法计算出其它具有不同对称性质的正解.
关键词:ρ-Henon方程 对称破缺分歧 多解 扩张系统 解枝转接 
计算圆域上p-Henon方程边值问题多个正解的分歧方法被引量:2
《应用数学和力学》2010年第4期481-490,共10页李昭祥 杨忠华 
国家自然科学基金资助项目(10901106);上海市重点学科建设资助项目(S30405);上海市自然科学基金资助项目(09ZR1423200);上海市科委创新资助项目(09YZ150);上海市教委高校优青培养科研专项基金资助项目(RE948);上海师范大学科研项目资助(SK200936)
首先应用分歧方法给出计算p-Henon方程边值问题O(2)对称正解的算法,然后以p-Henon方程中的参数l为分歧参数,在O(2)对称正解解枝上用扩张系统方法求出对称破缺分歧点,进而用解枝转接方法计算出其它具有不同对称性质的正解.
关键词:p-Henon方程 对称破缺分歧 多解 扩张系统 解枝转接 
p-Henon方程多解的计算
《上海师范大学学报(自然科学版)》2009年第6期561-565,共5页李昭祥 杨忠华 
国家自然科学基金(10671130);国家自然科学基金(10901106);上海重点学科建设项目(S30405);上海市教育委员会科研创新项目(09YZ150);上海市科委重点项目(06JC14092);上海师范大学科研项目(DKL936)
首先给出p-Henon方程边值问题保持D4对称的有限元离散方程,然后以p为参数,用Newton延拓法计算出具有不同对称性质的多解.
关键词:P—Henon方程 有限元离散 P延拓 多解 
超临界Hénon方程解的渐近行为
《中国科学(A辑)》2009年第5期545-554,共10页李书娟 彭双阶 
国家自然科学基金(批准号:10631030);教育部新世纪优秀人才支持计划(批准号:07-0350);教育部科学技术研究重点项目(批准号:107081);教育部留学归国人员基金资助项目
研究了下列Hénon方程解的渐近性态:-Δu=|x|αup-1,u>0,x∈B1(0)Rn(n≥3),u=0,x∈B1(0).这里α>0,p从左边趋近于p(α)=2(n+α)/(n-2)>2n/n-2(n≥3)。
关键词:HENON方程 渐近行为 超临界指标 
计算圆域上Henon方程边值问题多解的分歧方法被引量:1
《重庆工学院学报(自然科学版)》2008年第9期57-63,共7页朱海龙 李昭祥 杨忠华 
国家自然科学基金资助项目(10671130);上海市教委科研基金资助项目(05DZ07);上海市重点学科建设项目(T0401);上海市科委重点项目(06JC14092)
运用Liapunov-Schimdt约化方法和对称破缺分歧方法,计算了圆形区域Henon方程边值问题的多个具有不同对称性的数值解.
关键词:O(2)对称性 L—S约化 HENON方程 
计算Henon方程多个正解的分歧方法被引量:4
《中国科学(A辑)》2007年第12期1417-1428,共12页杨忠华 李昭祥 朱海龙 
国家自然科学基金(批准号:10671130);上海市教委科研基金(批准号:05DZ07);上海重点学科建设项目(批准号:T0401);上海市科委重点项目(批准号:06JC14092)资助
首先应用分歧方法给出计算Henon方程边值问题D_4对称正解的3种算法,然后以Henon方程中的参数r为分歧参数,在D_4对称正解解枝上用扩张系统方法求出对称破缺分歧点,进而用解枝转接方法计算出其他具有不同对称性质的正解.
关键词:HENON方程 对称破缺分歧 多解 扩张系统 解枝转接 拟弧长延拓 
检索报告 对象比较 聚类工具 使用帮助 返回顶部