亚纯允许解

作品数:17被引量:27H指数:3
导出分析报告
相关领域:理学更多>>
相关作者:金瑾高凌云刘瑞李晓萌苏先锋更多>>
相关机构:毕节学院暨南大学贵州工程应用技术学院贵州民族大学更多>>
相关期刊:《暨南大学学报(自然科学与医学版)》《应用数学学报》《纯粹数学与应用数学》《数学年刊(A辑)》更多>>
相关基金:贵州省科学技术基金国家自然科学基金广东省自然科学基金安徽省高等学校优秀青年人才基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
高阶非线性代数微分方程组的亚纯允许解
《四川师范大学学报(自然科学版)》2017年第2期189-192,共4页金瑾 
贵州省科学技术基金(2010GZ43286和2012GZ10526);贵州省毕节市科研基金([2011]02)
利用亚纯函数的Nevanlinna值分布理论,研究了高阶非线性代数微分方程组的亚纯允许解的存在性问题,获得了微分方程组的亚纯解或同为允许的,或同为非允许的,进而得到了更一般的结果.
关键词:代数微分方程组 亚纯函数 允许解 NEVANLINNA理论 值分布理论 
高阶非线性代数微分方程组的亚纯允许解
《东北师大学报(自然科学版)》2016年第4期10-14,共5页金瑾 
贵州省科学技术基金资助项目(2010GZ43286;2012GZ10526);贵州省毕节市科研基金资助项目([2011]02);贵州省教育厅重点项目([2015]392)
利用亚纯函数的Nevanlinna值分布理论,研究了高阶非线性代数微分方程组亚纯允许解的存在性问题,获得了微分方程组的亚纯解或同为允许的,或同为非允许的,进而得到了更一般的结果.
关键词:代数微分方程组 亚纯函数 允许解 NEVANLINNA理论 值分布理论 
一类差分方程组的亚纯允许解被引量:1
《东北师大学报(自然科学版)》2016年第2期27-30,共4页金瑾 
贵州省科学技术基金资助项目(2010GZ43286;2012GZ10526);贵州省毕节市科研基金资助项目([2011]02);贵州省教育厅科学技术基金重点资助项目([2015]392)
利用亚纯函数的Nevanlinna值分布理论,研究了一类差分方程组的亚纯解的存在性问题.得到差分方程组的亚纯解或同为允许、或同为非允许的结论,进而得到了更一般的结果.
关键词:差分方程组 亚纯函数 允许解 NEVANLINNA理论 值分布理论 
高阶非线性复微分方程组的亚纯允许解
《西北师范大学学报(自然科学版)》2016年第2期24-28,共5页金瑾 黄雕 蹇敏 
贵州省科学技术基金资助项目(2010GZ43286;2012GZ10526);贵州省毕节市科研基金资助项目([2011]02)
利用亚纯函数的Navanlinna值分布理论和方法,研究了一类高阶代数微分方程组的亚纯解.在亚纯解存在的条件下,证明关于此类方程组的一个不等式.
关键词:代数微分方程组 亚纯函数 允许解 NEVANLINNA理论 值分布 
一类高阶非线性代数微分方程组的亚纯允许解
《应用数学》2015年第4期890-894,共5页金瑾 
贵州省科学技术基金资助项目(2010GZ43286);贵州省科学技术基金资助项目(2012GZ10526);贵州省毕节市科研基金资助项目([2011]02)
利用亚纯函数的Nevanlinna值分布理论,研究一类高阶非线性代数微分方程组的亚纯解的存在性问题,获得微分方程组的亚纯解或同为允许的,或同为非允许的,进而得到更一般的结果.
关键词:代数微分方程组 亚纯函数 允许解 NEVANLINNA理论 值分布理论 
高阶非线性复微分方程组的亚纯允许解被引量:6
《东北师大学报(自然科学版)》2015年第1期22-25,共4页金瑾 武玲玲 樊艺 
贵州省科学技术基金资助项目(2010GZ43286;2012GZ10526);毕节市科研基金资助项目(201102)
利用亚纯函数的Nevanlinna值分布理论和微分方程的研究技巧,研究了一类高阶代数微分方程组的亚纯解,并且微分方程组的亚纯解或同为允许的,或同为非允许的.推广和改进了一些结论.
关键词:代数微分方程组 亚纯函数 允许解 NEVANLINNA理论 值分布理论 
两类复差分方程组的亚纯允许解被引量:5
《应用数学学报》2015年第1期80-88,共9页王钥 张庆彩 
中国人民大学2014年度拔尖创新人才培育资助计划成果
利用亚纯函数的Nevanlinna值分布理论,研究了两类复差分方程组的亚纯允许解的存在问题,推广和改进了一些文献的结论.例子表明我们的结论是精确的.
关键词:值分布理论 亚纯解 复差分方程组 
一类非线性代数微分方程组的非亚纯允许解
《曲靖师范学院学报》2014年第6期1-4,共4页金瑾 黄雕 简敏 
贵州省科学技术基金项目"复微分方程解的复振荡研究"(2010GZ43286);贵州省科学技术基金项目"微分方程解的理论及应用研究"(2012GZ10526);贵州省毕节市科研基金项目"喀斯特地区石漠化时空格局及其评价体系的模型研究"([2011]02)研究成果
利用Nevanlinna值分布理论讨论了复平面内一类复微分方程组的非允许解的存在性问题,证明了一类非线性复代数微分方程组的亚纯解是非允许解.
关键词:非允许解 复微分方程组 亚纯函数 值分布 
一类高阶非线性微分方程组的亚纯允许解被引量:8
《应用数学》2014年第2期292-298,共7页金瑾 李泽清 
贵州省科学技术基金资助项目(2010GZ43286;2012GZ10526);贵州省毕节市科研基金资助项目([2011]02)
利用亚纯函数的Nevanlinna值分布理论和微分方程的研究技巧,研究一类高阶非线性微分方程组的亚纯解,并且微分方程组的亚纯解或同为允许的,或同为非允许的.推广和改进了一些结论.
关键词:代数微分方程组 亚纯函数 允许解 NEVANLINNA理论 值分布理论 
高阶非线性微分方程组的亚纯允许解的值分布被引量:1
《毕节学院学报(综合版)》2013年第8期25-33,共9页金瑾 
贵州省科学技术基金资助项目"复微分方程解的复振荡研究";项目编号:2010GZ43286;贵州省科学技术基金资助项目"微分方程解的理论及应用研究";项目编号:2012GZ10526;贵州省毕节市科研基金资助项目"喀斯特地区石漠化时空格局及其评价体系的模型研究";项目编号:[2011]02;省市院联合资助项目"奇异椭圆系统解的存在性与多解性研究";项目目编号:LKB[2012]19
利用亚纯函数的Nevanlinna值分布理论和微分方程的研究技巧,研究了一类高阶非线性微分方程组的亚纯解,并给出微分方程组的亚纯解或同为允许的,或同为非允许的,推广和改进了一些结论。
关键词:代数微分方程组 亚纯函数 允许解 NEVANLINNA理论 值分布理论 
检索报告 对象比较 聚类工具 使用帮助 返回顶部