曾波

作品数:6被引量:3H指数:1
导出分析报告
供职机构:厦门大学更多>>
发文主题:量子环面导子自同构子群导子李代数更多>>
发文领域:理学经济管理更多>>
发文期刊:《数学学报(中文版)》《厦门大学学报(自然科学版)》更多>>
所获基金:国家自然科学基金博士科研启动基金湖南省教育厅科研基金湖南省自然科学基金更多>>
-

检索结果分析

署名顺序

  • 全部
  • 第一作者
结果分析中...
条 记 录,以下是1-6
视图:
排序:
一类扩张仿射李代数上的非交换Poisson代数被引量:1
《数学学报(中文版)》2015年第3期479-490,共12页向红 曾波 曹佑安 
国家自然科学基金资助项目(11171202);湖南省教育厅一般资助项目(10C1260)
讨论了以量子环面为坐标代数,零度v的A型扩张仿射李代数s1_N(CQ)上的非交换的Poisson代数,证明了它的导出李子代数上的结合乘积是平凡的.同时,给出了标度元素的结合积的形式.
关键词:扩张仿射李代数 POISSON代数 量子环面 Leibniz法则 
Laurent多项式代数C[x_1^(±1),x_2^(±1)]上的李三系
《数学学报(中文版)》2012年第5期811-816,共6页李昭 曾波 曹佑安 
国家自然科学基金资助项目(11171202);湖南省教育厅一般资助项目(10C1260)
设A为交换变元x_1,x_2的罗朗多项式代数,记A的导子代数Der A为M.本文确定了A,M的对合自同构.利用M的对合自同构给出了一类无限维单李三系,并且通过讨论M的自同构与对合自同构的关系,确定这些单李三系的自同构.
关键词:罗朗多项式代数 李三系 自同构 
d-torus上导子Lie代数的一类不可分解表示
《中国科学(A辑)》2009年第5期583-592,共10页连海峰 谭绍滨 曾波 
国家自然科学基金(批准号:10671160)资助项目
设DerA为d-torusA=C[t1±1,...,t±d1]上的导子Lie代数.通过Shen-Larsson函子,从有限维不可分解gld-模得到一类权空间维数有限的不可分解DerA-模,并给出了它们的所有子模.本文推广了Rao的结果。
关键词:LIE代数 不可分解模 TORUS 
量子环面上一类李代数的导子和中心扩张被引量:2
《数学学报(中文版)》2009年第1期163-170,共8页曾波 
国家自然科学基金资助项目(10671160);湖南省教育厅项目(07C745);湘潭大学博士启动基金资助
设■(q):=C_q[x_1^(±1),x_2^(±1)] Der_(skew)(C_q),其中C_q:=C_q[x_1^(±1),x_2^(±1)]是两个变量的量子环面,Der_(skew)(C_q)是C_q上的斜导子李代数,q是任意非零复数.记■(q)的导代数[■(q),■(q)]为L(q).本文确定了当q是p(>1)次...
关键词:量子环面 导子 中心扩张 
量子环面上斜导子李代数的不变对称双线性型和Leibniz二上同调群
《厦门大学学报(自然科学版)》2008年第6期777-781,共5页曾波 
国家自然科学基金(10671160)资助
设p≠1为任意取定的正整数,q≠1为p次本原单位根.再设Γ1=(pZ)2\{(0,0)},Γ2=Z2\(pZ)2.记B=spanC{Lm,n|(m,n)∈Γ1■Γ2}为量子环面Cq[x±1,y±1]上的斜导子李代数,其中,基元满足的李关系为:当(m,n),(r,s)∈Γ2时,[Lm,n,Lr,s]=(qnr-qms)...
关键词:不变对称双线性型 Leibniz二上同调群 斜导子 量子环面 
扭群~2F_4(q)的幺幂子群U^1的自同构
《湘潭大学自然科学学报》2007年第3期6-13,共8页曾波 曹佑安 
国家自然科学基金资助项目(10471116);湖南省教育厅资助科研项目(01A003);湖南省自然科学基金资研项目(02JJY2004)
设Fq是一个特征为2的q元有限域,2F4(q)是域Fq上的F4型扭群,它由幺幂子群U1,V1生成,该文确定幺幂子群U1的自同构群,证明U1的任一个自同构ψ都可以表示为对角自同构dx、域自同构ηf、内自同构aσ和中心自同构μc的乘积,即ψ=dx.ηf.σa.μc.
关键词:扭群 自同构 幺幂子群 
检索报告 对象比较 聚类工具 使用帮助 返回顶部