加权DIRICHLET空间

作品数:22被引量:26H指数:3
导出分析报告
相关领域:理学更多>>
相关作者:夏锦徐宪民王晓峰胡坤何莉更多>>
相关机构:广州大学浙江师范大学中山大学汕头大学更多>>
相关期刊:《四川师范大学学报(自然科学版)》《湖州师范学院学报》《数学杂志》《应用泛函分析学报》更多>>
相关基金:国家自然科学基金国家教育部博士点基金浙江省自然科学基金江苏省教育厅自然科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Hardy-Sobolev空间上的投影Toeplitz算子
《曲阜师范大学学报(自然科学版)》2022年第3期1-7,F0002,共8页林惠娜 何莉 
国家自然科学基金(11871170);广州大学研究生基础创新项目(2020GDJC-M30).
介绍了Hardy-Sobolev空间及其算子与算子代数研究方面的工作,主要刻画了具有某些特殊符号的Toeplitz算子在单位球的Hardy-Sobolev空间中为投影算子时的特征,并且进一步考虑了具有某种连续多重调和符号的Toeplitz算子乘积在单位球的Hardy...
关键词:Hardy-Sobolev空间 加权DIRICHLET空间 TOEPLITZ算子 TOEPLITZ代数 
加权复合算子在两类函数空间之间的序有界性
《数学学报(中文版)》2022年第2期317-324,共8页林庆泽 
国家自然科学基金资助项目(12071490)。
本文首先研究了加权复合算子W_(Φ,φ)(f):=Φfoφ的Hilbert-Schmidt性质与序有界性的对应关系.接着利用加权Dirichlet空间D^(q)_(β)(0
关键词:加权DIRICHLET空间 导数Hardy空间 加权复合算子 序有界性 
Volterra型算子从导数Hardy空间到加权Dirichlet空间上的序有界性
《韶关学院学报》2021年第9期1-4,共4页罗庆仙 
茂名市教育科学“十三五”规划研究项目(mjy2020023).
利用导数Hardy空间SP(0
关键词:Volterra型算子 导数Hardy空间 加权DIRICHLET空间 序有界性 
关于加权复合算子在加权Dirichlet空间上的有界性被引量:4
《应用泛函分析学报》2018年第4期369-376,共8页林庆泽 
设函数φ和Ф是复平面单位圆盘D上的解析函数且φ(D)D,则将加权复合算子定义为W_(φ,Ф):f→Фf°φ.当1<α+2
关键词:加权DIRICHLET空间 加权BERGMAN空间 加权复合算子 有界性 
双圆盘加权Dirichlet空间上Toeplitz算子的约化子空间被引量:1
《数学年刊(A辑)》2016年第3期311-328,共18页林鸿钊 胡寅寅 卢玉峰 
国家自然科学基金(No.11271059)的资助
刻画了双圆盘加权Dirichlet空间D_α(D^2)上Toeplitz算子T_Z_1N(或T_z_2N)和T_z_1N_z_2N的约化子空间.结果表明Toeplitz算子T_z_1N(或T_z_2N)的约化子空间结构与权系数α无关,而Toeplitz算子T_2_1N_z_2N的约化子空间结构与权系数α有关.
关键词:约化子空间 TOEPLITZ算子 DIRICHLET空间 双圆盘 
加权Dirichlet空间D_α~1上Toeplitz算子的紧性与Fredholm性质(英文)被引量:1
《广州大学学报(自然科学版)》2015年第6期1-8,共8页夏锦 胡坤 
利用对数加权Bloch空间和对数加权小Bloch空间,刻画了加权Dirichlet空间Dα^1上Toeplitz算子的有界性、紧性与Fredholm性质,讨论了Toeplitz算子的谱性质,计算了Toeplitz算子的Fredholm指标.
关键词:加权DIRICHLET空间 TOEPLITZ算子 紧性 Fredholm指标 
加权Dirichlet空间上加权复合算子的Fredholm性
《数学进展》2014年第3期419-424,共6页赵连阔 
国家自然科学基金(No.10971195;No.11201274);山西省青年科技研究基金(No.2010021002-2)
本文给出了加权Dirichlet空间D_β上有界Fredholm加权复合算子的刻画,作为推论分别给出了D_β上加权复合算子是有界可逆的和酉算子的刻画.
关键词:加权DIRICHLET空间 加权复合算子 Fredholm性 
加权Dirichlet空间上具有无界符号的Toeplitz算子(英文)被引量:1
《数学杂志》2014年第3期461-468,共8页何忠华 何莉 曹广福 
Supported by National Natural Science Foundation of China(10971040)
本文研究了加权Dirichlet空间上一类Toeplitz性质的问题.利用构造单位圆盘D上一类无界函数的方法,获得了以它为符号的Toeplitz算子是紧的结果.同时也通过构造一类L2(?)上的函数,使得它们在单位圆周上每一点的任何一个邻域都无界的方法,...
关键词:加权Dirichlit空间 无界符号 迹类算子 TOEPLITZ算子 
关于可递代数性质的一点注记
《温州大学学报(自然科学版)》2012年第4期16-19,共4页程国正 
国家自然科学基金青年项目(11101312)
证明了一类非完全NP核空间上移位算子M z具有可递代数性质,这是对已有相关结果的一个重要推广.
关键词:可递代数性质 完全NP核 加权DIRICHLET空间 移位算子 
加权Dirichlet空间上紧Toeplitz算子被引量:5
《四川师范大学学报(自然科学版)》2010年第1期36-41,共6页王晓峰 夏锦 
国家自然科学基金(1067042);教育部博士点基金资助项目
对α>-1,若算子S是加权Dirichlet空间Dα上有限个Toeplitz算子乘积的有限和,利用不同于加权Dirichlet空间再生核的一种新奇异积分核,得到了S为紧算子的充要条件是当z趋于单位圆盘边界时,S的类Berezin变换趋于0.又利用与Bermgan空间不同...
关键词:加权DIRICHLET空间 TOEPLITZ算子 紧算子 
检索报告 对象比较 聚类工具 使用帮助 返回顶部