本文对于积分from n=0 to 1 f(x,{Nx})dx带准确余项的渐近展开式from n=0 to 1 f(x,{Nx})dx=from n=0 to 1 from n=0 to 1f(x,y)dxdy+sum from k=1 to r 1/(k!) (1/N)~k from n=0 to 1[f^((k-1,0))(1,y)(?)_k(y-N)-f^((k-1,0))(O,y)B_k(...
本文给出了sum from (a_1+a_2+…a_k)=n to ((B_(a_1)(x)B_(a_2)(x)…B_(a_k)(x))/(a_1!a_2!…a_k!))的求和计算公式,其中B_i(x)为i次Bernoulli多项式,nZ≥k为正整数,。l+a2+…+ak‘n表示对所有满足该式的^维正整数组(a_1+a_2+…a_k)求和。