supported by National Natural Science Foundation of China (Grant No. 10471003, 10871103)
We simply call a superprocess conditioned on non-extinction a conditioned superprocess. In this study, we investigate some properties of the conditioned superprocesses (subcritical or critical). Firstly, we give an eq...
NNSF of China (Grant No.10471003);Foundation for Authors Awarded Excellent Ph.D.Dissertation
The global supports of super-Poisson processes and super-random walks with a branching mechanism ψ(z)=z^2 and constant branching rate are known to be noncompact. It turns out that, for any spatially dependent branc...
the National Natural Science Foundation of China(No. 10471003).
In this paper, the existence and smoothness of the collision local time are proved for two independent fractional Brownian motions, through L^2 convergence and Chaos expansion. Furthermore, the regularity of the colli...
Supported by NNSF of China (10001020 and 10471003), Foundation for Authors Awarded Excellent Ph.D.Dissertation
Suppose X is a super-α-stable process in R^d, (0 〈 α〈 2), whose branching rate function is dr, and branching mechanism is of the form ψ(z) = z^1+β (0 〈0 〈β ≤1). Let Xγ and Yγ denote the exit measur...
supported by the National Natural Science Foundation of China(Grant No.10471003);Foundation for Authors Awarded Excellent Ph.D.Dissertation.
This paper gives probabilistic expressions of theminimal and maximal positive solutions of the partial differential equation -1/2△v(x) + γ(x)v(x)α = 0 in D, where D is a regular domain in Rd(d ≥ 3) such that its c...