E是一实Banach空间,K是E的一非空闭凸子集.设f:K→K是一压缩映象,T1,T2…,TN∶K→K是具序列{kn}[1,+∞),lim kn=1 n→∞的有限簇一致L-Lipschitzian渐近伪压缩映象,且∩F(Ti)≠Φ from i=1 to N.设序列{xn}定义为xn+1=(1-αn-βn)xn+...
设f是一个压缩常数为h的压缩映象,T是一个非扩张映象使得F(T)≠Φ。{xn}是由下式xn+1=αnf(xn)+(1-αn)1/n+1 sum Tjxn from j=0 to n,n∈N,定义的迭代序列,其中{αn}(0,1)且满足lim αn=0 n→∞和sum αn=∞ from n=1 to ∞。证明{...