考虑具有正负系数中立型微分方程[y(t)-R(t)y(t-r)]‘+sum from j=1 to (?)(?)(P_i)(t)y(t-τ_i)-sum from j=1 to m (?)(Q_i)(t)y(t-σ_i)=0(m≤n)其中 P_i,Q_i,R∈C([t_o,+∞),R^+),r∈(0,+∞),τ_i,τ_iσ[0,+∞,i=1,…,n;j=1,…,m...
该文考虑多滞量和正负系数中立型方程[x(t)-sum from n=1 to l(1/n)C_A(t)x(t-r_n)]+sum from i=1 to (1/i)P_i(t)x()t-τ_i)-sum from j=1 to n(1/j)Q_j(t)x(t-σ_j)=0,其中C_A(k=1,…,l),P_i(i=1,…,m),Q_j(j=1…,n)∈C([to,∞co),R^+...