对角化

作品数:684被引量:782H指数:10
导出分析报告
相关领域:理学更多>>
相关作者:陈太红冯大政王建国周永行逯怀新更多>>
相关机构:西安电子科技大学东南大学电子科技大学中兴通讯股份有限公司更多>>
相关期刊:更多>>
相关基金:国家自然科学基金四川省教育厅科学研究项目福建省自然科学基金安徽省高校省级自然科学研究项目更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
一类双曲-抛物耦合方程组解的大时间性态
《浙江大学学报(理学版)》2025年第2期232-237,251,共7页刘炎 温芸锋 
广东省自然科学基金资助项目(2023A1515012044);广东省科技创新战略专项资金资助项目(pdjh2024b271).
研究了一类来自热弹性力学的n维双曲-抛物耦合方程组,刻画了其解的大时间渐近性态。首先,利用一类特殊的对角化方法得到能量的渐近表达式;然后,利用WKB分析和Fourier分析,得到该能量的大时间衰减及其渐近轮廓。
关键词:双曲-抛物耦合方程组 衰减估计 渐近轮廓 对角化方法 
基于广义KdV-Burgers方程的全对角化Chebyshev Dual-Petrov-Galerkin谱方法
《计算机与数字工程》2025年第3期628-631,共4页安筱 李珊 
上海市自然科学基金项目(编号:22ZR1443800);上海市科技计划项目扬帆计划Shanghai Sailing Program(编号:22YF1430600)资助。
针对有限区域上广义KdV-Burgers方程,提出了全对角化的Chebyshev dual-Petrov-Galerkin谱方法。该方法在数值模拟KdV-Burgers方程的扭结波解时是准确有效的,数值结果表明了该方法的精确性和高效性,且与以往算法相比,新算法优化了计算过...
关键词:Chebyshev dual-Petrov-Galerkin谱方法 全对角化 KdV-Burgers方程 数值结果 
2n阶实对称循环矩阵的性质与应用
《河南工程学院学报(自然科学版)》2024年第3期74-80,共7页田金玲 
以偶数阶数为切入点,利用矩阵分块的办法,2n阶实对称循环矩阵可以分块成分块全对称矩阵,存在正交矩阵可以将2n阶实对称循环矩阵准对角化,得到2n阶实对称循环矩阵的行列式、逆矩阵、特征值的简便计算公式。
关键词:对称循环矩阵 对称矩阵 对角化 行列式 逆矩阵 特征值 
秩1方阵相关计算被引量:1
《高等数学研究》2024年第4期122-125,共4页安晓虹 徐仲 赵俊峰 
高等学校大学数学教学研究与发展中心项目(CMC20220211);西北工业大学玛丽女王学院教改项目.
为考研准备,本文介绍秩1方阵的迹、求n次方、求特征值、对角化判断4个计算问题,并以考研原题为例展现秩1方阵在这几类计算中的特点.
关键词:秩1方阵  特征值 对角化 
线性代数课程思政教学设计——以矩阵求幂问题为例被引量:1
《高教学刊》2024年第19期173-176,共4页陈肖宇 
国家自然科学基金项目“几何知识的语义表示与智能化管理方法研究”(61702025);中国高等教育学会重点项目“基于教育数学思想培养大学数学教师”(22SX0201);北京航空航天大学一流本科课程立项项目“工科高等代数”。
以矩阵求幂问题为例,阐述在线性代数教学中的课程思政设计思路。通过分析教学对象的特点,从知识传授、能力培养和价值塑造三个方面提出教学目标,并以实际案例为切入点,将学生求知欲的培养、科学思维的锻炼和报国情怀的激发等思政元素融...
关键词:线性代数 课程思政 教学设计 矩阵相似 对角化 
可对角化矩阵特征值分解扰动问题的快速求解方法
《湖南大学学报(自然科学版)》2024年第7期119-126,共8页胡志祥 杨其东 黄潇 贺文宇 
国家自然科学基金资助项目(52178283,52378298);安徽省杰出青年基金项目(2208085J20)。
针对特征值扰动计算的传统方法收敛速度慢的问题,提出了一种求解特征值扰动问题的快速迭代算法.首先,通过矩阵变换将初始矩阵的特征值扰动问题转化为对角矩阵的特征值扰动问题.然后,提出了一种快速迭代算法求解扰动参数,同时对算法的收...
关键词:特征值分解 特征值扰动 摄动级数展开法 可对角化矩阵 收敛性分析 
四维洛伦兹空间中形状算子不可对角化且有两个不同主曲率类时共形齐性超曲面的分类
《数学进展》2024年第3期512-528,共17页林燕斌 吕楹 
福建省自然科学基金资助项目(Nos.2022J05167,2023J01027);福建省中青年教师教育科研项目(No.JAT200319);2020年闽南师范大学校长基金(No.KJ2020002);闽南师范大学校内高级别培育项目(No.MSGJB2023013)。
如果对任意两点p,q∈M_(1)^(3),都存在洛伦兹空间R_(1)^(4)中的一个共形变换σ,使得σ(x(p))=x(q),并且σ(x(M_(1)^(3)))=x(M_(1)^(3)),则称x(M_(1)^(3))为共形齐性超曲面.在本文中我们主要研究形状算子不可对角化且具有2个不同主曲率...
关键词:不可对角化 共形不变量 共形群 类时共形齐性超曲面 
一种基于对角化的抛物型最优控制问题的预处理子
《应用数学进展》2024年第5期2530-2540,共11页高广 
本文研究了求解抛物型偏微分方程约束的最优控制问题,利用对角化技巧,提出了一个新的基于对角化的预处理子,用于快速求解大型稀疏方程组。数值实验说明了预处理子的良好加速效果和稳定性。
关键词:预处理子 最优控制 抛物方程 对角化 
幂等矩阵的等价条件及其推广
《大学数学》2024年第1期108-113,共6页魏平 
国家自然科学基金项目(11461020);甘肃省自然科学基金项目(21JR7RA552)。
归纳证明了幂等矩阵的一些等价条件,并对一个幂等矩阵只有充分条件成立的结论给出必要条件不成立的例子,进一步探讨得到幂等矩阵的两个充要条件.
关键词:幂等矩阵 矩阵的秩 矩阵对角化 矩阵分解 秩幂等矩阵 
一类新的可对角化矩阵及其张量积与张量和
《南阳师范学院学报》2023年第6期42-45,共4页刘慧娟 秦建国 王超 
国家自然科学基金资助项目(11961076)。
应用正规矩阵、共轭转置矩阵的概念和理论,研究了适于条件A=A 2-I的矩阵A的特征值分布。利用矩阵张量积与张量和理论,获得了适于上述条件的两个矩阵A,B的张量积与张量和的表达式及其行列式的值,给出了适于这一条件的矩阵的张量积、张量...
关键词:共轭转置矩阵 正规矩阵 特征值分布 张量积 张量和 行列式 
检索报告 对象比较 聚类工具 使用帮助 返回顶部