切入

作品数:5153被引量:7232H指数:30
导出分析报告
相关领域:文化科学经济管理更多>>
相关作者:陈满铭曾倩尤陈俊王雅邹生书更多>>
相关机构:株式会社迪思科北京大学华东政法大学中国人民大学更多>>
相关期刊:更多>>
相关基金:国家社会科学基金教育部人文社会科学研究基金国家自然科学基金中央高校基本科研业务费专项资金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=数学之友x
条 记 录,以下是1-10
视图:
排序:
巧思维切入,妙方法解决——一道解析几何最值题的求解
《数学之友》2025年第3期67-68,72,共3页孔彦 
平面解析几何中的最值或最值范围问题是高考试卷中的一个创新点与难点所在,常考常新,变化多样.本文结合一道解析几何最值问题的求解,从不同思维视角切入,借助不同技巧方法解决,开拓学生的解题思路,指导数学教学与解题研究.
关键词:解析几何 最值 三角函数 参数方程 
巧思维切入,妙方法破解——2024年新高考数学Ⅰ卷第15题探究
《数学之友》2024年第21期74-75,77,共3页魏国斌 
解三角形综合问题是融合初、高中阶段中的不同知识的交汇与深化,并合理加以创设与应用,在此过程中融入相应的数学思想方法以及高中阶段中不同数学基础知识模块,构建一个良好的知识交汇与综合应用体系.这一直是高考中的一类常见考查形式...
关键词:解三角形 正弦定理 余弦定理 面积 
巧方法切入,妙变式拓展——一道数列通项题的求解技巧
《数学之友》2024年第15期45-46,共2页包学成 
数列通项题的求解技巧与策略方法是学生在学习数列模块知识中必须深刻理解与掌握一个基本技能.本文结合一道高考模拟题,从题设条件入手,从不同思维视角切入确定数列的通项公式,归纳总结数列通项公式的求解规律与技巧策略,指导教师教学...
关键词:数列通项 配凑 待定系数法 构造 
找准目标巧妙切入,分类讨论引领思想
《数学之友》2024年第13期80-81,84,共3页陈浩 
分类讨论思想作为基本数学思想之一,其应用一直是高考数学试卷命题的一个重要方向.本文结合分类讨论思想切入目标的寻找与确定,从不同层面加以展开与应用,并结合2023年高考真题进行剖析,探寻目标切入点,全面归纳总结应用技巧,指导并引...
关键词:分类讨论思想 集合 函数 数列 
相切位置巧设置,几何代数妙切入——一道解析几何题的突破
《数学之友》2024年第9期55-56,59,共3页王玉胜 
涉及直线、圆、圆锥曲线之间的相切问题,因其独特的形式,成为高考命题中的一个创新应用热点.本文结合一道圆与抛物线的相切问题,从代数视角与几何视角切入,合理剖析与应用,归纳总结解题技巧与策略,总结一般性结论与变式拓展,引领并指导...
关键词:抛物线  相切 导数 
巧问题条件分析,妙思维视角切入——一道多元最值竞赛题的探究
《数学之友》2024年第5期52-53,56,共3页张华琴 
涉及多元代数式(往往以双变元、三变元为主)的最值(或取值范围)问题,一直是高考、竞赛、自主招生等数学命题中比较常见的一类基本热点类型.借助一道竞赛题,通过三变元代数式最值的求解,从不同思维视角切入,优化数学思维,提升数学能力,...
关键词:最值 竞赛 数学思维 基本不等式 
巧视角切入,妙思维拓展——以一道高考真题为例
《数学之友》2024年第3期95-96,共2页文芳 
圆与圆的位置关系问题综合考查了点、直线、圆等相关元素的联系与应用,是高考命题的一大热点,创新点多,注重数学知识、数学思想和数学能力.结合一道两圆综合应用的高考真题,多思维视角切入,总结规律,变式拓展,展示数学学科价值,合理调...
关键词:高考真题  直线 多思维视角 
巧思维切入,妙视角拓展——一道向量最值题的探究
《数学之友》2023年第21期66-68,共3页刘伟华 
数学解题与研究是一个深层次的数学教学与学习过程,也是积累知识与经验、掌握技巧与方法的重要场所.本文通过一道强基计划的向量综合问题的展示,结合不同数学思维的应用,剖析解题的方法技巧,深入拓展与研究,凸显数学本质与内涵,引领并...
关键词:向量 思维 视角 拓展 投影 
多思维视角切入,多变式层面拓展——一道椭圆题的探究
《数学之友》2023年第21期90-92,共3页裴巧玲 
涉及圆锥曲线中的离心率的取值范围(或最值)问题,往往是高考命题中比较常见的一种基本方式.借助一道模拟题的探究,就椭圆离心率的最值分析与求解,从不同思维视角切入加以分析与解决,合理变式与拓展,总结思路与技巧策略,引领并指导数学...
关键词:圆锥曲线 离心率 椭圆 最小值 变式 
巧思维视角切入,妙极限思想应用—— 一道三角求值题的探究
《数学之友》2023年第18期67-69,共3页向海 
基于问题场景的数学思维的展开与应用,是获取破解数学问题方法的基本思维方向.结合一道三角函数求值模拟题,从问题场景入手,结合多思维视角切入,结合运动变化规律,探寻极限思想应用的妙处,引领并指导数学教学与解题研究.
关键词:三角函数 平面几何 解析几何 斜率 极限思想 
检索报告 对象比较 聚类工具 使用帮助 返回顶部